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ABSTRACT
This paper explores conditions under which players cooperate in

a dynamic network game. Historically, folk theorems have pro-

vided a speckled perspective by showing that there exists equilibria

where players cooperate, do not cooperate, as well as a myriad of

equilibria between these extremes. Our main contribution is identi-

fying a necessary and sufficient equilibrium refinement such that,

for all equilibria, all players cooperate in order to reach a strictly

Pareto dominant graph. We base our results on a class of games

that subsume forward-looking extensions of exchange economies

with indivisible goods.
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1 INTRODUCTION
Can forward-looking, strategic, non-cooperative agents cooperate in
order to achieve a mutually preferred outcome? Folk theorems have

historically provided a mixed answer to this question. Broadly

speaking, such theorems establish that any individually rational and
feasible outcome is an equilibrium when players are very forward-

looking [1, 5, 8]. As such, dynamic gameswith very forward-looking
players have equilibria where players cooperate, never cooperate,

as well as a myriad of equilibria between these extremes. Folk

theorems are often viewed as a ‘negative result’ because it generally

precludes the analysis of strategic behavior in such settings.

This paper presents an equilibrium refinement approach to shed

new light on the posed question. Our main contribution is identi-

fying a necessary and sufficient refinement such that, for all such

equilibria, all players cooperate in order to reach a strictly Pareto

dominant outcome. Our theorem is a ‘positive result’. Specifically,

this characterization reveals that a form of ‘collusion’ is necessary
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in order for non-cooperative players to cooperate notwithstand-

ing a mutual incentive to do so. Perhaps somewhat surprisingly,

the necessary and sufficient refinements that characterize these

‘good’ equilibria are considerably strong, highlighting that cooper-

ation does not emerge naturally even from very forward-looking,

strategic behavior.

To put our analysis into context, we study a class of dynamic

network games that subsumes many applied economic models. In

a companion paper [16], we show that the class subsumes dynamic

extensions of many matching models [15] and exchange economies

with indivisible goods [11]. For exchange economy models, our

framework allows for general exchange processes (e.g., package

models, [2]) and general preference structures (e.g., couple prefer-

ences, [17]). The class also subsumes dynamic extensions of com-

monly used myopic network models [13, 14] as well as the dynamic

network game analyzed by [4].

Our equilibrium refinement is summarized in two conditions.

Refinement # 1: The first refinement, which we call stability, is
closely related to trembling perfection [25]. We say that an action

profile is unstable if a player does not form a link only because

he/she anticipates the (respective) other to not form a link, notwith-

standing a mutually strict benefit in doing so. Put another way,

stability avoids the ‘zero corner’ of agents’ action space.

Refinement # 2: The second refinement, which we call collusiveness,
is related to the coordination issue described above.

1
However,

whereas stability concerns players i and j who must coordinate, the
second refinement requires playersk , i, j to abstain from accepting

a second-best option in order to allow i and j to coordinate.

We prove that there exists an equilibrium that is stable and col-

lusive in every dynamic network game (whether or not there exists

a strict Pareto dominant outcome). Consequently, there always ex-

ists the potential that non-cooperative, strategic agents are able to

cooperate, and our analysis highlights the necessary and sufficient

barriers that must be overcome for this to occur.

Related literature. In the network literature, it is well-known that

non-cooperative players do not necessarily cooperate in order to

achieve collectively preferred outcomes. In myopic settings, it is

often the case that agents lack the foresight to overcome locally

inefficient outcomes in order to reach strictly preferred networks

(see, e.g., [13] and [26]). While intuition suggests that introduc-

ing forward-looking strategies would attenuate this issue, Dutta

et al. [4] present a negative example. Specifically, Dutta et al. (The-

orem 2) demonstrate that forward-looking strategies, as predicted

by Markov perfect equilibrium, exhibit additional complications

that must be overcome for forward-looking players to ‘agree’ on

1
The collusion refinement is closely related to Herings et al. (2009) definition of a

“pairwise farsightedly stable set” ; see Section 4 for discussion.
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outcomes that are strictly preferred by all players.
2
In this paper, we

highlight a new problem that is not in their example (due to their

link monotonicity assumption): players can prefer severing links

to move away from strictly Pareto dominant outcomes in fear of

others severing links and, thereby, creating unprofitable outcomes.

In sum, forward-looking players generally will not reach strictly

dominant outcomes, in the short- or long-run, notwithstanding a

mutual strict preference in doing so and a discount factor tending

to unity.

A different approach that has received attention is considering

perfectly farsighted agents, such that agents make decisions only

taking into account the long-run outcome [3, 20, 27]. In this extreme

case, perfect farsightedness is a sufficient condition to ensure that

non-cooperative players reach strictly Pareto dominant outcomes

(see, e.g., Herings et al., 2009, Theorem 7). This paper addresses the

less-extreme case of forward-looking considered by [4] and [9] in

an attempt to identify conditions under which the positive results

with perfectly farsighted players also hold with forward-looking

players.

Structure of the paper. The paper proceeds as follows. In Section 2,
we present the model. In Section 3, we present two equilibrium re-

finements, which form the basis of our main results in Section 4. We

conclude in Section 5. All proofs can be found in the full companion

paper [16].

2 DYNAMIC NETWORK GAMES
Players and networks. LetN = {1, 2, . . . ,n} denote a set of play-

ers. Players can form links between each other; we let ij represent
a link between players i and j . No link between i and j is represented
by ∅. It is useful to let Li j = {∅, ij} and Li = ×j,iLi j .

3

A graph is a collection of links between players. The set of

possible graphs equals G ⊆ {ij | i, j ∈ N : i , j}. We denote a

typical graph as д ∈ G. For notation we let д− ij = д\{ij} represent
the removal of link ij and д + ij = д ∪ {ij} represent the addition
of link ij.

Utility. Player i’s preference over graphs is represented by a

utility ui : G → R. In general, i’s utility depends on both personal

links (e.g., ij) and links between other players (e.g., jk with j,k , i).
The collection of all utilities is u = (u1, . . . ,un ) : G → Rn .

Actions. Players can change the graph topology in order to im-

prove payoffs. The set of pure-strategies for player i can be repre-

sented as A
д
i = N with the following interpretation: (i) if ij < д

then j ∈ A
д
i represents i trying to form a link with j; (ii) if ij ∈ д

then j ∈ A
д
i represents i severing the link with j; and (iii) i ∈ A

д
i

represents i doing nothing.
A mixed-strategy at graph д is denoted as

αi (д) = (αi1(д), . . . ,αin (д)) ∈ ∆(A
д
i ).

Here, αi j (д) is interpreted as the probability that i’s realized action

is j ∈ A
д
i . An action

αi = (αi (д))д∈G ∈ ×д∈G∆(A
д
i ) =: Ai

2
In contast to [4], we do not assume link monotonicity, anonymity, ‘limited transfer’,

and ‘increasing returns to link creation’.

3
All results in the paper generalize to the case where Li j is an arbitrary finite set; for

details, see an earlier version of the paper.

is a mixed-strategy taken by player i at each graph д ∈ G. We

denote a collection of actions as α = (α1, . . . ,αn ) ∈ ×i ∈NAi =: A .

Timing and how graphs change. Following [13] and [4], we sup-

pose one player changes the graph topology at each time step

t = 0, 1, 2, . . . in the following way:

(1) At time step t , a player is selected according to a probability

distribution f (· | дt ,α), which may depend on the graph дt

and/or mixed-actions α .4

(2) If (e.g.) player i is selected, then he/she employs the mixed-

strategy αi (д
t ) ∈ ∆(A

дt
i ). The probability of the graph

changing then depends on i’s realized pure-strategy:

(2.a) Player i can sever any link unilaterally. For example, if

ij ∈ д, then the probability that i chooses to sever its link

with j is αi j (д
t ), in which case дt+1 = дt − ij.

(2.b) Player i can form a link only if another player agrees to do

so. For example, if ij < д, then the probability that i and
j form a link is αi j (д)α ji (д), in which case дt+1 = дt + ij.
αi j (д) represents the probability that i proposes a link to

j; α ji (д) represents the probability that j accepts.5

Net-present valuations. We assume that players are forward-

looking when strategically deciding whether to form or sever links.

A player’s net-present value ofдt ∈ G, given a profile of strategies

α ∈ A , equals

Ui (д
t ,α) := ui (д

t ) + E

[
∞∑
s=1

δsi ui (д
t+s )

���дt ,α ] ,
where δi ∈ (0, 1) is i’s discount of future payoffs, and the expec-

tation is formed by P(· | д,α) ∈ ∆ (G), which is the conditional

probability of moving from дt to another graph induced by players’

strategies α (the dependence on f is implied).

A dynamic network game is defined by the tuple

Γ := {N ,G,A ,u, f }.

Example 2.1 (Bilateral free-trade agreement network [10]). An
example of our model is a bilateral free-trade network game [10].

N represents countries. A link ij represents whether countries i
and j have formed a bilateral free-trade agreement. ui : G → R
represents country i’s payoff as a function of all countries’ free-trade

agreements. Depending on the free-trade agreement networkд ∈ G,

αi j (д) represents the probability that i ends the agreement with j
/ proposes a free-trade agreement with j. In the latter case, α ji (д)
represents the probability that j accepts i’s free-trade agreement.

Finally,Ui (д
t ,α) represents country i’s discounted flow of profits.

2.1 Equilibrium concept
We next introduce the equilibrium concept most commonly used to

analyze dynamic games (see, e.g., [19], and [4]). Broadly speaking,

an equilibrium action profile is one from which no player has a

payoff incentive to deviate because each player plays a mutual

best-reply action. To precisely define an equilibrium of a dynamic

4
[13] and [4] assume that f (i | дt , α ) = 1/n.

5
The restriction to letting αi j describe the probability of forming and accepting a

link, rather than separating these two strategies, is for the sake of notation and not

necessarily restrictive. All results would hold substantially but with more notation.
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network game, we first must introduce what it means for an action

to be optimal.

Definition 2.2. For player i , α∗i ∈ Ai is an optimal action with

respect to opponents’ action profile α−i ∈ A−i if i’s ex ante net-
present value is maximized at every graph, i.e.,

Ui (д,α
∗
i ,α−i ) ≥ Ui (д, α̂i ,α−i ) for all д ∈ G and α̂i ∈ Ai .

By definition, an optimal action takes into account all (probable)

sequences of graphs and others’ actions thereafter. An equilibrium

action profile extends Definition 2.2 to all players.

Definition 2.3. A Markov perfect equilibrium (MPE) is an ac-

tion profile α∗ =
(
α∗
1
, . . . ,α∗n

)
∈ A such that all players play

optimal actions, i.e., α∗i is an optimal action with respect to α∗
−i for

all i ∈ N .

2.2 Assumption
To prove our main results, we require an assumption on the player

selection process, f . Recall that f (i | д,α) is the probability that i is
selected at graph д when players employ α . A common assumption

is to let f (i | д,α) = 1/n [4, 13]. However, it is clear from our

analysis that f can crucially determine whether or not players can

cooperate to reach the strictly Pareto dominant outcome (see [16]).

In order to proceed, we impose the following assumption on the

player selection process. The intuition is that players who are doing

nothing—i.e. choose to stay at a current graphwith probability one—

are not selected by f . As such, only players actively trying to sever

or propose a link are selected by f .

Assumption 1 (A-1). A dynamic network game satisfies A-1 if,
for all д ∈ G and α ∈ A , f (i | д,α) > 0 only if αii (д) < 1.

3 EQUILIBRIUM REFINEMENTS
In this section, we present two equilibrium refinements of MPE,

which form the basis of our main results below.

3.1 Preliminary definitions
In what follows, we focus on dynamic network games that have a

strictly Pareto dominant graph, which is defined as follows.

Definition 3.1. AgraphдS is strictly Pareto dominant ifui (дS ) >
ui (д) for all i ∈ N and all д , дS .

We focus on gameswith a strictly Pareto dominant graph because

it provides a baseline. In addition, it highlights that, even in such

an extreme situation, it is nevertheless difficult for very forward-

looking players to cooperate.

Our main result concerns when players can cooperate to reach

a strictly Pareto dominant graph. To make our research question

more precise, we must clarify what it means for players to ‘reach’

дS . Denote P as the |G| × |G| matrix of transition probabilities

induced by an action profile α ∈ A . As such, (P t )дд′ equals the

probability of going from д to д′ in exactly t steps.6

Definition 3.2. For a given action profile α ∈ A , a network дS is

strongly absorbing if, for all д ∈ G, the Markov chain induced by

α converges to дS a.s., that is, limt→∞(P t )ддS = 1 for all д ∈ G.

6
To clarify, if t = 0 then P 0

is the identity matrix, and if t = 1 then Pдд′ is a matrix

version of P (д′ | д, ·).

In other words, our measure for whether players are successful

at attainingдS is relatively weak: we simply ask if players, behaving

according to a MPE, attainдS eventually in infinite time irrespective

of the starting graph. Notwithstanding our weak criterion, we show

that MPE itself is far from sufficient to yield a positive answer.

It is also useful to utilize a somewhat weaker stability notion,

pairwise stability, as in [13].

Definition 3.3. A graph д ∈ G is pairwise stable for a given

action profile α ∈ A if P(д′ | д,α) = 0 for all д′ ∈ G\{д}.

In other words, once players reach a pairwise stable graph, they

stay there indefinitely. Note that if a graph other than дS is pairwise

stable, then дS is not strongly absorbing. It is clear that, for any

pairwise stable graph д ∈ G,Ui (д) =
1

1−δi
ui (д).

Finally, we introduce a definition on which both refinement

conditions below build. Let Σ := N × G denote the set of player-

graph pairs. For some subset S ⊆ Σ denote the corresponding profile

of actions as αS = (α j (д))(j,д)∈S . With some abuse of notation, we

let Bi (д,α−S ,αS ) denote i’s set of best-replies to (α−S ,αS ), where

α−S ∈ ∆(A−S ) := ×(k,д′)∈Σ\S∆(A
д′

k ).

Definition 3.4. For some α̂ ∈ A and S ⊂ Σ, α̂S is a robust
subset of actions if, for all (i,д) ∈ S , α̂S,i (д) ∈ Bi (д,α−S , α̂S ) for
all α−S ∈ ∆(A−S ).

Put another way, a robust subset of actions is a collection of

actions, identified by S ⊂ Σ, such that each element is a best-reply

in response to this set of actions identified by S , irrespective of the
actions taken by player-graph pairs outside of S . We illustrate the

definition of a robust subset of actions via examples below.

3.2 First refinement: Stability
The first refinement builds on the observation that MPE are in

general not trembling perfect in the sense of [25]. If i perceives j
as strictly preferring a network дS , then i should anticipate j as
placing positive probability weight on realizing дS ; as a result, i
should in anticipation rationalize to also place probability weight

on realizing this network if he, too, strictly prefersдS . Yet, if j places
zero probability weight on reachingдS , then it is considered optimal

by i to also place zero weight on linking with j , and vice versa. This
argument does not hold if j or i’s action space is perturbed by ε and
αi j (д

S ) = 0 was no longer a viable action. As such, an ε-tremble in

the action profile can cause players to quickly adjust actions that

were previously seen as optimal. This intuition underlies our next

definition.

Definition 3.5 (Unstable triplet). For α̂ ∈ A and some S ⊂ Σ,
suppose α̂S is a robust subset of actions. Then for (i,д), (j,д) < S ,
the tuple (i, j,д) is an unstable triplet if the following holds for

all α−S ∈ ∆(A−S ):

(i) ∃ α̃i (д) ∈ Bi (д,α−S , α̂S ) such that α̃i j (д) = 0 only if α ji (д) = 0,

(ii) ∃ α̃ j (д) ∈ Bj (д,α−S , α̂S ) such that α̃ ji (д) = 0 only if αi j (д) = 0.

Definition 3.6 ((Un-)stable action profiles). An action profile α̂ ∈

A is unstable if there exists an unstable triplet (i, j,д) such that

α̂i j (д) = 0 or α̂ ji (д) = 0. An action profile is stable if it is not

unstable.
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Figure 1: Example of stability.

The intuition for an unstable action profile is as follows. An

unstable triplet requires that (e.g.) player i does not place probability
weight to form a link with j only if i anticipates that j also does not
try to form a link; the same must be true for j. An unstable action

profile then requires that, indeed, neither player places probability

weight on forming a link. Accordingly, we define stability as the

negation of instability.

We illustrate stability with a simple example.

Example 3.7 (Stability — Figure 1). Consider playersN = {i, j,k}
who can form links between each other. We assume that j can
form a link with i and/or k , while i and k cannot form a link. As

such, possible network topologies consist of no links (which we

denote as д0), one link (д1k or д1i ), and two links (дS ). All players
receive a utility equal to the number of links, as depicted in Figure 1.

Therefore, the two-link graph is strictly Pareto dominant.

Intuitively, all players have the strategic incentive to place prob-

ability weight on reaching дS from all graphs. We show that, in

general, this is not the case.

Consider an action profile α∗ ∈ A such that α∗ii (д
S ) = α∗j j (д

S ) =

α∗kk (д
S ) = 1, i.e., the strictly Pareto dominant graph is pairwise

stable. This implies that, letting S := {(l ,дS )}l ∈N , α∗S is a robust

subset of actions. In addition, suppose that α∗ii (д
1

k ) = α∗j j (д
1

k ) =

α∗kk (д
1

k ) = 1, namely, players stay at д1k with probability one and do

not reach дS despite being one link away. It is evident that (j,k,д1k )

is an unstable triplet, and hence α∗ is an unstable action profile.

We show α∗ is indeed consistent with MPE behavior. Consider

k’s best-reply correspondence at д1k . If k places probability weight

on linking with j, then k’s net-present value would not change

because the probability measure does not change, as j would not ac-
cept k’s link proposal. Therefore, remaining at д1k with the strategy

α∗kk (д
1

k ) = 1 and α∗k j (д
1

k ) = 0 is in k’s best-reply correspondence.

Therefore, α∗ is a MPE, unstable, and дS is not strongly absorbing.

Note that α∗ is not necessarily stable to ε-perturbations of the
dynamic network game. Suppose that j places ε weight on linking

with k (either because of an imperfect action or an ε-change in

j’s action space) and (1 − ε) on remaining at д1k—note that this ε-
deviation is in fact an optimal action. Given this new action profile,

it is no longer optimal for k to place zero weight on reaching дS . In
contrast, it is uniquely optimal to set αk j (д

1

k ) = 1 and αkk (д
1

k ) = 0

irrespective of actions at all other graphs.

3.3 Second refinement: Collusiveness
The second refinement is related to stability. However, whereas

stability addresses players i and j who must coordinate to act, the
condition here is related to players k , i, j who must abstain from

acting in order to allow i and j to coordinate. The problem is that,

if i and j fail to coordinate, other players accept a ‘second best

option’ instead of waiting for i and j . We show later that MPE is not

sufficient to preclude such behavior even for very forward-looking

players.

To state the next definition, for any K ⊆ N we let αK→д :=

(αk (д))k ∈K such that αkk (д) = 1 ∀k ∈ K—that is, picking any

player in K results in staying at д with probability one.

Definition 3.8. For S ⊂ Σ and α̂ ∈ A , let α̂S be a robust subset of

actions. Let д ∈ G and K ⊂ N such that, for SK :=
⋃
k ∈K {(k,д)},

SK ∩ S = ∅. Then we say that (K, S,д) is a collusive tuple if, for
all k ∈ K , ∃α̃k (д) ∈ Bk (д, β,αK→д , α̂S ) such that α̃kk (д) = 1 for

all β ∈ ∆(A−(S∪SK )).

In other words, two conditions must be met in order for (K, S,д)
to form a collusive tuple. First, S must form a robust subset of

actions, which serves as the incentive for collusion. Second, at

some д ∈ G there must exist a set of playerK that would all strictly

benefit to collude by setting αkk (д) = 1. This definition allows us

to present our second refinement property.

Definition 3.9 ((Un-)collusive action profiles). An action profile

α̂ ∈ A isuncollusive if, for some collusive tuple (K, S,д), α̂kk (д) <
1 for some k ∈ K . An action profile is collusive if it is not uncollu-
sive.

7

Uncollusiveness extends Definition 3.8 by requiring that one

player in K plays αkk (д) < 1, in spite of the incentive to collude.

We illustrate collusiveness with an example.

Example 3.10 (Collusiveness — Figure 2). Consider a dynamic

network game consisting of players N = {i, j,k .l}, as depicted in

Figure 2. There exists four possible graphs, G = {дk ,дl ,д1,дS },
where we assume дS is strictly Pareto dominant. Possible actions

at each graph is depicted in Figure 2. Reaching дS from д1 only

requires a bilateral link between {i, j}, and reaching д1 from дk and

дl requires a bilateral link between {i,k} and {j,k}, respectively.
We claim that, without the collusive property, stablility is not

strong enough to ensure that дS is strongly absorbing any MPE.

7
The collusive property is closely related to the “pairwise farsightedly stable set” (PFSS)
introduced by Herings et al. (2009, Definition 4). By condition (ia) of a PFSS, no

player has an incentive to leave a PFSS for fear of arriving at another graph in the

PFSS that is strictly worse off than the original graph. This relates to condition (ii) of

uncollusiveness: trying to collude is deterred by the threat of j ∈ I acting (α̂ j j (д) < 1)

and procuring unfavorable networks. Condition (ii) of a PFSS suggests that, broadly

speaking, the PFSS is a (possible weak) subset of the recurrent class (see Koch and

Rossier, 2019, for the definition and use of recurrent classes in our proof). Though these

definitions are similar, the analysis in [12] takes a perspective closer to cooperative

game theory while the analysis in this paper takes a non-cooperative game theory

approach.
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Figure 2: Example of collusiveness.

In fact, we claim that an uncollusive and stable MPE exists that

renders дk and дl as pairwise stable outcomes even as δ → 1.

Denote α∗ ∈ A as a stable MPE. By stability, α∗i j (д
1) = α∗ji (д

1) =

1. Suppose that α∗kk (д
k ) = α∗l l (д

l ) = 1 (k and l stay at дk and дl

with probability one) and α∗ki (д
1) = α∗l j (д

1) = 1 (k and l leave д1

with probability one).

We must show that the action profile as described is uncollusive.

Firstly, it can easily be shown that, for S = {(i,д1), (j,д1)}, α∗S is a

robust subset of actions. Secondly, if k and l set α ′
kk (д

1) = α ′
l l (д

1) =

1 then дS is reached from д1 with probability one, which would

be strictly preferred by both k and l ; therefore, with K = {k, l},
(K, S,д1) is a collusive tuple. Finally, both α∗kk (д

1) = 0 < 1 and

α∗l l (д
1) = 0 < 1. Therefore, α∗ is uncollusive.

Next, we must show that k’s net-present value of дk is strictly

greater than д1, which would render дk as pairwise stable and дS as

not strongly absorbing. In other words (omitting α∗ from notation

momentarily),

Uk (д
k ) =

1

1 − δk
uk (д

k )

> Uk (д
1)

= uk (д
1) + δk ·

1

4

(
2Uk (д

S ) +Uk (д
k ) +Uk (д

l )
)
.

(1)

If (1) holds, then we show in the companion paper that setting

αkk (д
k ) = 1 fork is a unique best-reply action ([16], Corollary 2). By

symmetry, we can show that the same holds for l , which establishes

that the action profile is indeed a MPE.

Player l ’s action, rendering дl as pairwise stable, implies that

Uk (д
l ) = 1

1−δk
uk (д

l ). Using Corollary 2 in the companion paper

again, strict Pareto dominance implies thatUk (д
S ) = 1

1−δk
uk (д

S ).

These observations and re-arranging terms in (1) yield

(4 − δk )uk (д
k ) > 4(1 − δk )uk (д

1) + δk ·

(
2uk (д

S ) + uk (д
l )
)

and letting δk → 1 simplifies the expression to

3uk (д
k ) > 2uk (д

S ) + uk (д
l ).

From this expression, it is clear that the inequality can be satisfied

for suitably selected utility values. The intuition is that l ’s threat of

moving from д1 to дl with α∗l j (д
1) = 1 incentivizes k to not wait for

i or j to be selected and, instead, place probability weight on the

second-best option of дk . Therefore, without the collusive property,
there exists a dynamic network game Γ with a stable MPE such

that дS is not realized in the long-run as δ → 1.

The collusive property precludes l ’s threat-based action. Clearly,

if αl l (д
1) = 1 then k’s unique best-reply action at д1 is to also

place all probability weight on realizing дS , i.e., αkk (д
1) = 1. The

same holding true for l , implying that both players strictly prefer

colluding by setting αkk (д
1) = αl l (д

1) = 1.

3.4 Summary
In sum, stability is a refinement that ensures that players are coor-

dinating to form mutually beneficial links. Collusiveness, on the

other hand, is a refinement that focuses on making sure that play-

ers not forming links help players that are formings links toward

mutually preferred outcomes. As shown below, these refinements

together are both necessary and sufficient for very forward-looking,

non-cooperative players to cooperate and reach a strictly Pareto

dominant graph.

4 MAIN RESULTS
In this section, we present our main results. These results take two

forms. First, we prove that stable and collusive MPE exist in any

dynamic network game. Second, we prove that stable and collusive

as equilibrium refinements are necessary and sufficient for ensuring

that all such MPE render дS as strongly absorbing.

All proofs can be found in the companion paper [16].

4.1 Characterization of cooperation
We now present our main results.

4.1.1 Existence of a stable and collusive MPE. In the following

theorem, we establish that there exists a MPE that satisfies stability

and collusiveness in every dynamic network game.

Theorem 4.1. In all dynamic network games, there exists a (sta-
tionary) MPE that satisfies stability and collusiveness.

The proof builds on previous equilbrium existence results of

finite dynamic games from [7] and [4], and we demonstrate how to

construct a stable and collusive MPE. In particular, the existence of a

MPE is ensured by Kakutani fixed-point theorem (see [16]) Suppose,

contrary to our assertion, that there exists no equilibrium that is

stable. Then by definition, there exists a robust subset of actions.

We construct a reduced action space where (i) all robust subset of

actions are fixed, (ii) the ‘unstable’ action space region is reduced

by ε-amount, and (iii) the remaining action space is unchanged. We

construct the region in such a way that the Kakutani fixed-point

theorem again applies. If there exists no stable MPE, we apply the

same argument. We can repeat only finitely many times until we

eventually arrive at a stable MPE, which contradicts our initial

hypothesis; therefore, there exists a stable MPE. The argument for

the existence of a stable and collusive MPE follows similarly.
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4.1.2 Characterization of cooperation in dynamic network games.
Before we present our main result, some notation is required. De-

fine EMPE (Γδ ) as the set of MPE of a dynamic network game Γδ ,
where δ = (δ1,δ2, . . . ,δn ) represents players’ discount factors. We

compare players’ discount factors with the standard product order

such that δ ≥ δ if and only if δ i ≥ δi for all i = 1, 2, . . . ,n.
Let ρ denote an equilibrium refinement property, e.g., stability

and/or collusiveness. We then denote EMPE (·, ρ) ⊆ EMPE (·) as

the set of all MPE that satisfy property ρ.

Theorem 4.2. There exists a δ ∈ (0, 1)n such that, for all δ ≥ δ ,
the following statements are equivalent:

(1) For all dynamic network games Γδ satisfying A-1 with a strictly
Pareto dominant graph дS , дS is strongly absorbing for all
α∗ ∈ EMPE (Γδ , ρ);

(2) Refinement ρ represents stability and collusiveness.

In other words, stability and collusiveness are necessary and

sufficient conditions to ensure that, for the global class of dynamic

network games, players attain collectively preferred outcomes. It

is evident in the proof [16] that collusiveness is a necessary con-

dition only for games in which players have strong incentives to

miscoordinate. In a particular dynamic network game, the collusive

refinement may be vacuous. With the following corollary we show

that stability, on the other hand, is a necessary refinement that

applies for all dynamic networks games.

Corollary 4.3. Let Γ denote a dynamic network game with a
strictly Pareto dominant graph,дS . Then there exists a δ ∈ (0, 1)n such
that, for all δ ≥ δ , дS is strongly absorbing for all α∗ ∈ EMPE (Γδ , ρ)
only if ρ implies stability.

5 DISCUSSION
In this paper, we explore conditions under which very forward-

looking, strategic players cooperate in a dynamic network game.

Historically, folk theorems have provided a speckled (and in many

ways a negative) perspective on whether non-cooperative players

can cooperate in dynamic settings.We present an equilibrium refine-

ment approach to go beyond folk theorems. Our main contribution

is identifying a necessary and sufficient equilibrium refinement

that guarantees the selection of a strictly Pareto dominant graph

(if one exists) in the long run as the discount factor tends to one.

The refinements we identify are considerably strong, highlight-

ing that cooperation does not emerge naturally even from very
forward-looking, strategic behavior.

We have made several assumptions to benchmark our main

results. In particular, we assumed common knowledge, focused on

games with a strictly Pareto dominant graph, and on a particular

link formation dynamic. These assumptions clarify how difficult it

is for non-cooperative, very forward-looking agents to cooperate.

One avenue of future work is revisiting these assumptions and,

more generally, subjecting our main results to a robustness check.

There exists several avenues for future work. One possible av-

enue is investigating the role of information in our results. Through-

out, we assumed complete information (e.g., players knew the graph

structure at all states and there exists no private information), and

it remains an open question whether environments with asym-

metric information [6, 18] or ‘no information’ [21, 22] support or

hinder forward-looking, strategic players from attaining efficient

outcomes. Another possible avenue is considering this problem

from a mechanism design perspective. To this end, our necessary

and sufficient refinement provides a road map for developing mech-

anisms that facilitate forward-looking, strategic players to attain

collectively preferred outcomes [23, 24].
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