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There has been much recent interest in the online bipartite match-
ing problem of Karp, Vazirani and Vazirani [2], and variations of it,
due to its applicability to allocation problems in certain economic
settings. A prominent example is online advertising; for more de-
tails, see the survey by Metha [3]. The new problems are both
theoretically elegant and practically relevant.

Our Setting.We study a setting related to online bipartite match-
ing, that we callMax-Min Greedy matching. LetGn be the family of
bipartite graphs with perfect matching of size n. Our setting is a
game between a maximizing player and a minimizing player. The
bipartite graphG(U ,V ;E) ∈ Gn is given upfront. Upon seeingG the
maximizing player chooses a permutation π overV . Upon seeingG
and π , the minimizing player chooses a permutation σ overU . The
combination ofG , π and σ define a unique matchingMG [σ ,π ] that
we refer to as the greedy matching. It is the matching produced
by the greedy matching algorithm in which vertices ofU arrive in
order σ and each vertex u ∈ U is matched to the highest (under π )
yet unmatched v ∈ N (u) (or left unmatched, if all N (u) is already
matched).

Let ρ[G] = 1
n maxπ minσ [|MG [σ ,π ]|], and let ρ = minG ∈Gn [ρ[G]].

It is easy to see that ρ ≥ 1
2 ; since every greedy matching is a maxi-

mal matching, for every permutation π the obtained matching is of
size at least n/2. The question we study in this work is whether the
max player can ensure a matching of size strictly greater than n/2;
that is, whether ρ is strictly greater than 1

2 . For an upper bound on
ρ, it was observed by Cohen Addad et al. [1] that ρ ≤ 2/3.

Our results. Our main result is the following:
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Theorem [main theorem]: It holds that ρ ≥ 1
2 +

1
86 > 0.51. More-

over, there is a polynomial time algorithm that given G(U ,V ;E)
produces a permutation π over V satisfying the above bound.

We believe that further improvements are possible. A first at-
tempt in proving such a result would be to check whether a random
permutation π obtains the desired result (in expectation). Unfor-
tunately, we show a graph G for which a random permutation
matches no more than a fraction 1/2 + o(1) of the vertices. In con-
trast, we show that in the case of Hamiltonian graphs a random
permutation guarantees a competitive ratio strictly greater than
1/2. A similar proof approach applies to regular graphs as well.

We further establish lower and upper bounds for regular graphs.

Theorem [regular graphs]: For d-regulars bipartite graphs, ρ ≥
5
9 −O( 1√

d
). On the other hand, for every integer d ≥ 1, there is a

regular graph Gd of even degree 2d such that ρ(Gd ) ≤
8
9 .

An additional natural problem is to find the best permutation π ,
given a graph G . For the special case of determining whether there
is a perfect π (a permutation on V that for every permutation σ
leads to a perfect matching), we give a polynomial time algorithm
that outputs π .
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